





TÜVRheinland CERTIFIED







ENDURING HIGH PERFORMANCE



### **BREAKING THE 20% EFFICIENCY BARRIER**

Q.ANTUM DUO Z Technology with zero gap cell layout boosts module efficiency up to 20.9%.



### THE MOST THOROUGH TESTING PROGRAMME IN THE INDUSTRY

Q CELLS is the first solar module manufacturer to pass the most comprehensive quality programme in the industry: The new "Quality Controlled PV" of the independent certification institute TÜV Rheinland.



# **INNOVATIVE ALL-WEATHER TECHNOLOGY**

Optimal yields, whatever the weather with excellent low-light and temperature behaviour.



# **ENDURING HIGH PERFORMANCE**

Long-term yield security with Anti LID Technology, Anti PID Technology¹, Hot-Spot Protect and Traceable Quality Tra.Q™.



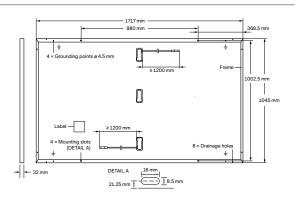
## **EXTREME WEATHER RATING**

High-tech aluminium alloy frame, certified for high snow (5400 Pa) and wind loads (4000 Pa).



# A RELIABLE INVESTMENT

Inclusive 12-year product warranty and 25-year linear performance warranty<sup>2</sup>.


# THE IDEAL SOLUTION FOR:





<sup>&</sup>lt;sup>1</sup> APT test conditions according to IEC/TS 62804-1:2015, method A (-1500 V, 96h)

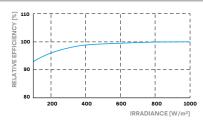
 $<sup>^{2}</sup>$  See data sheet on rear for further information.



### **ELECTRICAL CHARACTERISTICS**

| PO    | WER CLASS                          |                  |              | 350              | 355      | 360   | 365   | 370   |
|-------|------------------------------------|------------------|--------------|------------------|----------|-------|-------|-------|
| MIN   | IIMUM PERFORMANCE AT STANDAR       | RD TEST CONDITIO | NS, STC1 (PO | OWER TOLERANCE   | +5W/-0W) |       |       |       |
| — unu | Power at MPP¹                      | P <sub>MPP</sub> | [W]          | 350              | 355      | 360   | 365   | 370   |
|       | Short Circuit Current <sup>1</sup> | I <sub>sc</sub>  | [A]          | 10.97            | 11.00    | 11.04 | 11.07 | 11.10 |
|       | Open Circuit Voltage <sup>1</sup>  | V <sub>oc</sub>  | [V]          | 41.11            | 41.14    | 41.18 | 41.21 | 41.24 |
| Mini  | Current at MPP                     | I <sub>MPP</sub> | [A]          | 10.37            | 10.43    | 10.49 | 10.56 | 10.62 |
| 2     | Voltage at MPP                     | V <sub>MPP</sub> | [V]          | 33.76            | 34.03    | 34.31 | 34.58 | 34.84 |
|       | Efficiency <sup>1</sup>            | η                | [%]          | ≥19.5            | ≥19.8    | ≥20.1 | ≥20.3 | ≥20.6 |
| MIN   | IIMUM PERFORMANCE AT NORMAL        | OPERATING CONE   | DITIONS, NIV | 1OT <sup>2</sup> |          |       |       |       |
|       | Power at MPP                       | P <sub>MPP</sub> | [W]          | 262.6            | 266.3    | 270.1 | 273.8 | 277.6 |
| E     | Short Circuit Current              | I <sub>sc</sub>  | [A]          | 8.84             | 8.87     | 8.89  | 8.92  | 8.95  |
| Minim | Open Circuit Voltage               | V <sub>oc</sub>  | [V]          | 38.77            | 38.80    | 38.83 | 38.86 | 38.90 |
|       | Current at MPP                     | I <sub>MPP</sub> | [A]          | 8.14             | 8.20     | 8.26  | 8.31  | 8.37  |
|       | Voltage at MPP                     | V <sub>MPP</sub> | [V]          | 32.24            | 32.48    | 32.71 | 32.94 | 33.17 |

 $^1\text{Measurement tolerances P}_{\text{MPP}}\pm3\%; \text{I}_{\text{SC}}; \text{V}_{\text{OC}}\pm5\% \text{ at STC: } \underline{1000\text{W/m}^2, 25\pm2\text{°C}, \text{AM 1.5 according to IEC 60904-3}} \\ \bullet ^2800\text{W/m}^2, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \\ \bullet ^2800\text{W/m}^2, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \\ \bullet ^2800\text{W/m}^2, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \\ \bullet ^2800\text{W/m}^2, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \\ \bullet ^2800\text{W/m}^2, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \\ \bullet ^2800\text{W/m}^2, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \\ \bullet ^2800\text{W/m}^2, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \\ \bullet ^2800\text{W/m}^2, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \\ \bullet ^2800\text{W/m}^2, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \\ \bullet ^2800\text{W/m}^2, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \\ \bullet ^2800\text{W/m}^2, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \\ \bullet ^2800\text{W/m}^2, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \\ \bullet ^2800\text{W/m}^2, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \\ \bullet ^2800\text{W/m}^2, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \\ \bullet ^2800\text{W/m}^2, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \\ \bullet ^2800\text{W/m}^2, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \\ \bullet ^2800\text{W/m}^2, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \\ \bullet ^2800\text{W/m}^2, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \\ \bullet ^2800\text{W/m}^2, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \\ \bullet ^2800\text{W/m}^2, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \\ \bullet ^2800\text{W/m}^2, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \\ \bullet ^2800\text{W/m}^2, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \\ \bullet ^2800\text{W/m}^2, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \\ \bullet ^2800\text{W/m}^2, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \\ \bullet ^2800\text{W/m}^2, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \\ \bullet ^2800\text{W/m}^2, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \\ \bullet ^2800\text{W/m}^2, \text{NMOT, spectrum AM 1.5 according to IEC 60904-3} \\ \bullet ^2800\text{W/m}^2, \text{NMOT, spect$ 


### Q CELLS PERFORMANCE WARRANTY

# | 100 | 100 | 100 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150 | 150

At least 98% of nominal power during first year. Thereafter max. 0.5% degradation per year. At least 93.5% of nominal power up to 10 years. At least 86% of nominal power up to 25 years.

All data within measurement tolerances. Full warranties in accordance with the warranty terms of the Q CELLS sales organisation of your respective country.

### PERFORMANCE AT LOW IRRADIANCE



Typical module performance under low irradiance conditions in comparison to STC conditions (25 °C, 1000 W/m²).

| TEMPERATURE COEFFICIENTS                    |   |       |       |                                      |      |       |       |
|---------------------------------------------|---|-------|-------|--------------------------------------|------|-------|-------|
| Temperature Coefficient of I <sub>SC</sub>  | α | [%/K] | +0.04 | Temperature Coefficient of Voc       | β    | [%/K] | -0.27 |
| Temperature Coefficient of P <sub>MPP</sub> | γ | [%/K] | -0.34 | Nominal Module Operating Temperature | NMOT | [°C]  | 43±3  |

# PROPERTIES FOR SYSTEM DESIGN

| Maximum System Voltage      | $V_{\text{SYS}}$ | [V]  | 1000      | PV module classification           | Class II      |
|-----------------------------|------------------|------|-----------|------------------------------------|---------------|
| Maximum Reverse Current     | I <sub>R</sub>   | [A]  | 20        | Fire Rating based on ANSI/UL 61730 | C/TYPE 2      |
| Max. Design Load, Push/Pull |                  | [Pa] | 3600/2660 | Permitted Module Temperature       | -40°C - +85°C |
| Max. Test Load, Push / Pull |                  | [Pa] | 5400/4000 | on Continuous Duty                 |               |

### **QUALIFICATIONS AND CERTIFICATES**

Quality Controlled PV - TÜV Rheinland; IEC 61215:2016; IEC 61730:2016. This data sheet complies with DIN EN 50380.



 $\epsilon$ 

Note: Installation instructions must be followed. See the installation and operating manual or contact our technical service department for further information on approved installation and use of this product.

### Hanwha Q CELLS GmbH

 $Sonnenallee 17-21, 06766 \ Bitterfeld-Wolfen, Germany \ | \ \textbf{TEL} + 49 \ (0)3494 \ 66 \ 99-23444 \ | \ \textbf{FAX} + 49 \ (0)3494 \ 66 \ 99-23000 \ | \ \textbf{EMAIL} \ sales@q-cells.com \ | \ \textbf{WEB} \ www.q-cells.com \ | \ \textbf{WEB} \ ww.q-cells.com \ | \ \textbf{WEB} \ ww.q-cells.com \ | \ \textbf{WEB} \ www.q-cells.com \ | \ \textbf{WEB} \ ww.q-cells.com \ | \ \textbf{WEB} \ ww.q-cells.c$ 

